6,834 research outputs found

    The Relationship Between Molecular Gas Tracers and Kennicutt-Schmidt Laws

    Full text link
    We provide a model for how Kennicutt-Schmidt (KS) laws, which describe the correlation between star formation rate and gas surface or volume density, depend on the molecular line chosen to trace the gas. We show that, for lines that can be excited at low temperatures, the KS law depends on how the line critical density compares to the median density in a galaxy's star-forming molecular clouds. High critical density lines trace regions with similar physical properties across galaxy types, and this produces a linear correlation between line luminosity and star formation rate. Low critical density lines probe regions whose properties vary across galaxies, leading to a star formation rate that varies superlinearly with line luminosity. We show that a simple model in which molecular clouds are treated as isothermal and homogenous can quantitatively reproduce the observed correlations between galactic luminosities in far infrared and in the CO(1->0) and HCN(1->0) lines, and naturally explains why these correlations have different slopes. We predict that IR-line luminosity correlations should change slope for galaxies in which the median density is close to the line critical density. This prediction may be tested by observations of lines such as HCO^+(1->0) with intermediate critical densities, or by HCN(1->0) observations of intensely star-forming high redshift galaxies with very high densities. Recent observations by Gao et al. hint at just such a change in slope. We argue that deviations from linearity in the HCN(1->0)-IR correlation at high luminosity are consistent with the assumption of a constant star formation efficiency.Comment: Accepted to ApJ. 11 pages, 4 figures, emulateapj format. This version has some additional models exploring the effects of varying metallicity and temperature. The conclusions are unchange

    The transient response of global-mean precipitation to increasing carbon dioxide levels

    Get PDF
    The transient response of global-mean precipitation to an increase in atmospheric carbon dioxide levels of 1% yr(-1) is investigated in 13 fully coupled atmosphere-ocean general circulation models (AOGCMs) and compared to a period of stabilization. During the period of stabilization, when carbon dioxide levels are held constant at twice their unperturbed level and the climate left to warm, precipitation increases at a rate of similar to 2.4% per unit of global-mean surface-air-temperature change in the AOGCMs. However, when carbon dioxide levels are increasing, precipitation increases at a smaller rate of similar to 1.5% per unit of global-mean surface-air-temperature change. This difference can be understood by decomposing the precipitation response into an increase from the response to the global surface-temperature increase (and the climate feedbacks it induces), and a fast atmospheric response to the carbon dioxide radiative forcing that acts to decrease precipitation. According to the multi-model mean, stabilizing atmospheric levels of carbon dioxide would lead to a greater rate of precipitation change per unit of global surface-temperature change

    The use of wearable/portable digital sensors in Huntington’s disease: a systematic review

    Get PDF
    In chronic neurological conditions, wearable/portable devices have potential as innovative tools to detect subtle early disease manifestations and disease fluctuations for the purpose of clinical diagnosis, care and therapeutic development. Huntington’s disease (HD) has a unique combination of motor and non-motor features which, combined with recent and anticipated therapeutic progress, gives great potential for such devices to prove useful. The present work aims to provide a comprehensive account of the use of wearable/portable devices in HD and of what they have contributed so far. We conducted a systematic review searching MEDLINE, Embase, and IEEE Xplore. Thirty references were identified. Our results revealed large variability in the types of sensors used, study design, and the measured outcomes. Digital technologies show considerable promise for therapeutic research and clinical management of HD. However, more studies with standardized devices and harmonized protocols are needed to optimize the potential applicability of wearable/portable devices in HD

    HD-CSF protocol

    Get PDF

    A Process for the Semi-Automated Generation of Life-Sized, Interactive 3D Character Models for Holographic Projection

    Get PDF
    By mixing digital data into the real world, Augmented Reality (AR) can deliver potent immersive and interactive experience to its users. In many application contexts, this requires the capability to deploy animated, high fidelity 3D character models. In this paper, we propose a novel approach to efficiently transform – using 3D scanning – an actor to a photorealistic, animated character. This generated 3D assistant must be able to move to perform recorded motion capture data, and it must be able to generate dialogue with lip sync to naturally interact with the users. The approach we propose for creating these virtual AR assistants utilizes photogrammetric scanning, motion capture, and free viewpoint video for their integration in Unity. We deploy the Occipital Structure sensor to acquire static high-resolution textured surfaces, and a Vicon motion capture system to track series of movements. The proposed capturing process consists of the steps scanning, reconstruction with Wrap 3 and Maya, editing texture maps to reduce artefacts with Photoshop, and rigging with Maya and Motion Builder to render the models fit for animation and lip-sync using LipSyncPro. We test the approach in Unity by scanning two human models with 23 captured animations each. Our findings indicate that the major factors affecting the result quality are environment setup, lighting, and processing constraints

    An SIS-based sideband-separating heterodyne mixer optimized for the 600 to 720 GHz band

    Get PDF
    The Atacama Large Millimeter Array (ALMA) is the largest radio astronomical enterprise ever proposed. When completed, each of its 64 constituting radio-telescopes will be able to hold 10 heterodyne receivers covering the spectroscopic windows allowed by the atmospheric transmission at the construction site, the altiplanos of the northern Chilean Andes. In contrast to the sideband-separating (2SB) receivers being developed at low frequencies, double-side-band (DSB) receivers are being developed for the highest two spectroscopic windows (bands 9 and 10). Despite of the well known advantages of 2SB mixers over their DSB counterparts, they have not been implemented at the highest-frequency bands as the involved dimensions for some of the radio frequency components are prohibitory small. However, the current state-of-the-art micromachining technology has proved that the structures necessary for this development are attainable. Here we report the design, modeling, realization, and characterization of a 2SB mixer for band 9 of ALMA (600 to 720 GHz). At the heart of the mixer, two superconductor-insulator-superconductor (SIS) junctions are used as mixing elements. The constructed instrument presents an excellent performance as shown by two important figures of merit: noise temperature of the system and side band ratio, both of them within ALMA specifications

    A fully defined artificial diet for Myzus persicae – the detailed technical manual

    Get PDF
    We have been able to maintain a continuous culture of Myzus persicae (Hemiptera: Aphididae) on a fully defined artificial diet at Reading, UK, for over 30 years, without any return to plants. Following multiple requests from aphid researchers, here we provide the details of our culturing method. Detailed instructions are given for rearing M. persicae on the diet. An improved recipe is included as well as the construction and changing of diet sachets
    • …
    corecore